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Abstract— Biomass feedstock preprocessing through 
comminution is an essential first step in biofuel production. 
Chemical, physical and mechanical variability in feedstock 
prevents the preprocessing plants from assuming constant control 
parameters. Constant control parameters can lead to suboptimal 
capability and reliability. However, adapting the control 
parameters to account for the variabilities is not a trivial task. This 
paper presents a framework for adapting control parameters 
through data driven methodologies. The framework named PDU-
RS is a decision support system for human in the loop control. 
PDU-RS is implemented on the Biofuels National User Facility 
Preprocessing Process Demonstration Unit (PDU), operated by the 
Idaho National Laboratory (INL) in Idaho Falls, Idaho. PDU-RS 
aims at ensuring reliability in the overall operations of the PDU 
while maximizing throughput. Presented implementation of the 
PDU-RS uses Gaussian Processes (GP) for knowledge extraction 
from data. This paper elaborates on the PDU-RS and presents the 
experimental results of implementing the PDU-RS on the real 
Biomass PDU. The experimental results demonstrated that the 
PDU-RS is able to produce significantly higher throughputs while 
ensuring higher reliability when compared to the traditional 
control methodology used with the system.  

Keywords — Biomass comminution, Gaussian process, Decision 
support system 

I. INTRODUCTION 
Mechanical size reduction (comminution) of biomass 

feedstock is a fundamental preprocessing mechanism for 
production of biofuels. Comminution of biomass helps to 
increase the bulk density and surface area of biomass feedstock 
[1], [2].Comminution is necessary to reduce transportation, 
handling and storage costs [2], [3], [4], which is fundamental for 
making the biomass industry an economically viable enterprise 
[5]. Comminution influences pellet durability and densification 
processes [4].  

Size reduction is not only necessary for reducing cost, but it 
is also required for most of biomass refinery and combustion 
technologies. For biofuel production, size-reduction is necessary 
to eliminate mass and heat-transfer limitations during the 
hydrolysis reactions [6]. Further, it reduces the crystallinity of 
cellulose and improves digestibility [7]. An increased 
percentage of small particles also improves ignition and 
combustion properties of biofuels [3]. For example, corn-stover 
ethanol production requires particles to be reduced to 0.5 mm to 
3 mm [8].  

Processing of particle systems, like biomass feedstock and 
powders, present several challenges. The interaction of particle 

systems with process equipment can be unpredictable, which 
makes mathematical models difficult to obtain [9]. Feedstock 
presents a large variability in terms of moisture content, ash and 
particle morphology [10]. These highly variable factors are 
difficult to control and affect the efficiency and production rate 
of grinding systems [2].  

Given the large variability in the feedstock properties, 
refinement plants usually have to deal with products that were 
not considered during the design phase [10]. This causes 
equipment to be operated beyond the original design envelopes, 
causing inefficient production and common downtimes. 

Large-scale production of biofuels requires developing 
strategies for reliable operation of the equipment involved and 
being able to reject disturbances induced by feedstock 
variability that was not considered in the design phase.  

Improving reliable and optimal operation of the grinding 
systems has been primarily addressed for ore comminution [11], 
[12], [13]. Research on biomass comminution has been instead 
focused on characterizing the energy consumption and 
properties of the resultant product for different grinding 
technologies [1], [14], [15], [16], [17], [18]. Ore comminution 
and feedstock grinding systems face common problems in the 
control paradigm. Model mismatches, sensitivity to variations in 
ore hardness and particle size distribution [11] , [13] and 
complex unpredictable behavior of particle systems [9] are some 
of the reasons that have lead researchers to turn into data-driven 
models for improving the comminution process [11], [19], [20].  

Data-driven approaches allow efficient extraction of 
information and knowledge from large amounts of historical 
data. These techniques are becoming increasingly popular on 
large-scale industrial environments for control, monitoring and 
diagnosis [21], [22], [23]. They provide tools for analyzing and 
obtaining mathematical models of complex systems when first 
principles physics-based modeling techniques are either too 
complicated or do not provide satisfactory results.  

In this paper, we present a data-driven recommendation 
system called PDU-RS. The system provides estimations of the 
performance of the grinding system for a given feedstock infeed 
rate, bale moisture content and grinder screen sizes. This allows 
the operator to make appropriate informed decisions for 
processing a given feedstock bale, ideally improving the 
throughput and reliability of the plant. The estimation of the 
system behavior is built upon available historical data. The 
system uses Gaussian processes (GP) for obtaining a model of 
the throughput and reliability of the system as a function of the 
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infeed rate, bale moisture content and grinder screen sizes. 
Furthermore, GP allow the modeling of confidence (uncertainty) 
in the predictions. The operator can use the estimations from GP 
to make an informed decision about the parameters of the plant 
that would lead to a maximum throughput while reducing 
downtimes.  

The rest of this paper is organized as follows. Section II 
introduces the PDU and elaborates on some of the control 
problems. Section III introduces the machine learning 
techniques used in the PDU-RS. Section IV elaborates upon the 
PDU-RS. Section V presents control experiments and the results 
obtained, and finally Section VI concludes the paper. 

II. INL BIOMASS FEEDSTOCK PREPROCESSING PROCESS 
DEMONSTRATION UNIT 

This section provides an overview of the PDU that is 
operated by the INL at the Biofuels National User Facility in 
Idaho Falls, ID and used as a key demonstration within this 
paper.  

The PDU is a full-scale, integrated preprocessing system. 
The PDU is used for preprocessing feedstock supply and its 
main role is to reduce bales of biomass feedstock into particles 
of predefined size distribution. The particle reduction process is 
handled in two stages, through two main grinders. Grinding 
screens are used in both grinders and screens can be changed 
depending on the requirements of the customer. The first stage 
grinder (G1) has the capability of using five different screen 
sizes: 6”, 4”, 3”, 2”, and 1” while the second stage grinder (G2) 
has two different screen sizes:  1” and ¼”. The rate of feeding 
the bales into the system and the screen sizes are the two primary 
parameters that can be changed to control the operations of the 
PDU. The main factor that affects the changes in the plant is the 
moisture content of the bale. Therefore, the control variables are 
determined depending upon the moisture content of the bale. 

Fig. 1 shows the overall biomass feedstock preprocessing 
process. As mentioned, the PDU consists of two grinders for the 
two stages of grinding (G1 and G2). Material is transferred with 
the use of conveyor belts. The biomass feedstock preprocessing 
is carried out in a pipeline. Prior to comminution the bales are 
weighed and probed for moisture content.  The bales are then 

introduced into G1. Once the raw material is ground using G1, 
two drag conveyors (DC1, DC2) are used to transfer material to 
G2. Then G2 is used to complete the second stage of grinding and 
the reduced particles are moved to the metering bin through a 
screw conveyor where the material is stored in preparation for 
the densification process.  

The performance or capability of the system is measured in 
terms of the systems’ throughput, which is the amount of 
material that is processed for a given time (measured in 
tons/hour). The reliability of the system is measured in terms of 
the time that the system is operational. Reliability of each 
component (grinders and conveyers) is measured as percentage 
of the time they were functioning during the grinding process. 
Component failure is a result of the feedstock variability in their 
chemical composition, physical properties and mechanical 
properties [10]. Feedstock variability results in different 
material deconstruction behavior during preprocessing. These 
problems include plugging of grinding screens, overloading 
grinders, plugging of conveyors and increased wear and tear of 
the grinders. Figure 2 shows a plugged screen in one of the 
grinders. The primary cause of these problems is that the 
preprocessing control parameters typically do not adapt to the 
variable feedstock inputs. Therefore, adapting of control 
parameters depending upon the feedstock variability is of 

 
Figure 1: PDU-RS diagram. Key: G: grinder, C: conveyor, IT: current transducer, SC: speed/frequency controller 

 
Figure 2: Plugged screen 



absolute essence to prevent the PDU from failing and to prevent 
sub-optimal performance.  

As material is introduced into the process, bale weight and 
moisture content is provided to the operator.  Also, each of the 
conveyors and grinders have real time usage indicators available 
to the operator, ultimately allowing the monitoring of the health 
of the PDU. The indicators include primarily motor currents of 
the components and a product level sensor for the drag 
conveyors. These indicators are compared to predefined 
thresholds.  If the indicators exceed thresholds on a consistent 
basis, the operator can adjust the control parameters to bring the 
PDU operations back to “safe” conditions. Therefore, real time 
monitoring is extremely crucial for the PDU. 

Therefore, the goal of the presented work is to minimize the 
percentage of time that components are not functioning while 
maximizing the material throughput of the system. To that end, 
bale infeed rate (IFR) and G1 and G2 screen sizes are used as the 
primary control parameters, while bale moisture content (BMC) 
is used as the feedstock variability indicator. PDU-RS 
recommends optimal values for the IFR and the screen sizes 
depending upon the BMC before operation starts.  

III. GAUSSIAN PROCESSES 
This section provides a brief background on Gaussian 

Processes (GP). GP are used for data driven recommendations 
for the PDU-RS.  

GP provide a flexible framework that allows for designing 
data-driven models using Bayesian analysis [24]. A Gaussian 
process is specified through a mean function 𝜇𝜇(𝑥𝑥)  and a 
covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′), which together provide a model 
for a stochastic process 𝑓𝑓(𝑥𝑥): 

 𝑓𝑓(𝑥𝑥) ~ 𝒢𝒢𝒢𝒢�𝜇𝜇(𝑥𝑥), 𝑘𝑘(𝑥𝑥, 𝑥𝑥′)� (1) 

Given a training dataset 𝑋𝑋  and a testing dataset𝑋𝑋∗ , the 
Gaussian process assumes the samples are drawn from the 
following joint prior Gaussian distribution: 
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where  𝜇𝜇(𝑋𝑋)  represents the mean for the prior. 𝐾𝐾 =
𝑘𝑘(𝑋𝑋,𝑋𝑋),𝐾𝐾∗ = 𝑘𝑘(𝑋𝑋,𝑋𝑋∗),𝐾𝐾∗∗ = 𝑘𝑘(𝑋𝑋∗,𝑋𝑋∗)  are the matrices 
obtained by evaluating the kernel 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) on the training and 
test datasets. 

The function 𝜇𝜇(𝑋𝑋) can be thought of as the default output of 
the model when no data is available. Most of the applications 
involving GP assume  𝜇𝜇(𝑋𝑋) = 0, which intuitively represents 
zero as the expected output when no data is available. 

From the properties of Gaussian distributions, given the 
training dataset {𝑓𝑓,𝑋𝑋}, the posterior probability distribution of 
the outputs of the test dataset is expressed as follows: 

 𝑝𝑝(𝑓𝑓∗|𝑋𝑋∗,𝑋𝑋, 𝑓𝑓) = 𝒩𝒩(𝑓𝑓∗|𝜇𝜇∗, Σ∗) (3) 

 𝜇𝜇∗ = 𝜇𝜇(𝑋𝑋∗) + 𝐾𝐾∗𝑇𝑇𝐾𝐾−1�𝑓𝑓 − 𝜇𝜇(𝑋𝑋)� (4) 

 Σ∗ = Σ∗∗ − 𝐾𝐾∗𝑇𝑇𝐾𝐾−1𝐾𝐾∗ (5) 

 
Figure 3: PDU-RS displaying the estimated throughput and the confidence of the estimation to the user. Percentages are represented between zero and one 

 
Figure 4: Robust linear regression for extracting the linear prior 



IV. INTELLIGENT DECISION SUPPORT FOR BIOMASS PDU 
This section discusses the PDU-RS decision support system.    

The PDU-RS provides recommendations to the operator for 
the control variables given the attributes of the bale that needs to 
be processed. PDU-RS uses a GP based methodology for 
making recommendations to the operator. Figure 3 shows the 
PDU-RS interface. The GP based methodology is used to 
provide estimated results for throughput and system reliability 
for the recommendations. In addition to the estimations, the 
PDU-RS provides the confidence of the estimations. 

In the current implementation of the PDU-RS, IFR to the 
system and the Grinder screen sizes are considered controllable 
variables for the operator. 

A. GP based performance estimation 
GP provided a data-efficient model that was used to obtain 

estimations of performance and reliability while providing the 
confidence of the estimations.  

The PDU-RS uses GP for obtaining a model of the following 
variables: system throughput; average current on grinders and 
conveyors; standard deviation of the currents for grinders and 
conveyors; percentage of active time for grinders and 
conveyors; mass-flow in 𝐷𝐷𝐷𝐷1. 

The PDU-RS uses a linear mean function 𝜇𝜇(𝑥𝑥) as opposed 
to a zero mean for the prior distribution. This assists in providing 
more accurate predictions in non-explored spaces, based on the 
trend of data.  

Although in the Bayesian setting, the prior distribution is 
used to introduce assumptions of the model before taking into 
consideration the sampled data. For this application, linear 𝜇𝜇(𝑥𝑥) 
extracted from data was used in the prior distribution to provide 
a high bias model that can provide better estimations when 
extrapolating, while the Gaussian kernels will provide local 
expressive models for modeling local non-linear behaviors.  

Given that the data is often corrupted by noise that is not 
normally distributed, e.g. incorrect annotations, instead of 
standard 𝐿𝐿2 linear regression, we used a Huber function loss to 
attain robust linear regression when extracting 𝜇𝜇(𝑥𝑥)[25]. Figure 
4 shows the benefits of using robust linear regression for 
identifying data outliers. 

Using a linear 𝜇𝜇(𝑥𝑥) provides a tool for getting estimations of 
infeasible regions outside the explored space. In the case of 
throughput, regions with zero values suggest operation points 
where the system is unable to operate. These estimations provide 
a tool for warning the operator about harmful settings that might 
reduce reliability and capability.  

         
Figure 5 a) Throughput using a screen size of 6” in 𝐺𝐺1 

                
Figure 5 b) Throughput using a screen size of 3” in 𝐺𝐺1 

 



Providing the confidence of the estimations allows the 
operator to visualize the explored configuration space. Modeling 
confidence provides a tool for warning the operator about, 
possibly, incorrect estimations on regions where data is no 
available. For improving understanding of the user interface, the 
confidence is presented normalized between zero and one, 
where high confidence corresponds to regions where historical 
data of the process is available. 

Fig. 5 shows how GP provide information of previously 
explored space, estimations based on the trend of the data, and 
local non-linear variations on explored areas. The model 
provides a tool for making informed decisions about the infeed 
rate and screen sizes that should be used for a particular bale in 
order to increase throughput while maintaining a reliable 
operation.  

V. EXPERIMENTAL RESULTS 
In order to test the effectiveness of the developed PDU-RS, 

five different tests were carried out. Table 1 summarizes these 
tests. Tests were designed to cover the different scenarios that 
can arise in the real word operation of the PDU system. Tests 
one to three were designed to determine the performance for 
each of the base moisture cases. Tests four and five were 
designed to check the adaptability of the PDU-RS for a mixed 
set of bale moistures. For the tests, it should be noted that a 1” 
screen was used at the stage two grinder (G2) as INL has learned 
that this is more aligned with industry requirements and is 
actually more challenging to achieve.  

Apart from Test 1, all the tests were run with the screen sizes 
and IFRs recommended by the PDU-RS. For test 1, the screen 
size was fixed by the operators and only the optimal IFRs were 
recommended by the PDU-RS.  

Fig. 5 presents the estimations for throughput using a screen 
size of 6” and 3”. These figures provided valuable information 
to the operator about the expected performance of the system 
and the effects of the properties of the bale. For example, Fig. 
5.b. shows the high dependency of the throughput with respect 
to bale moisture content.  

Fig. 5 demonstrates how the PDU-RS was used for choosing 
the screen size for a particular bale. For low moisture bales, the 

GP model estimated that a 3” screen provides higher throughput 
than a 6” screen. In contrast, for high moisture bales, PDU-RS 
estimates the 3” screen will be unable to process the bale, hence 
the 6’’ screen is preferred. 

Fig. 5.b. shows the advantage of using a linear 𝜇𝜇(𝑥𝑥)  for the 
prior distribution. Even when data is not available for high 
moisture bales using a 3” screen, the model can extrapolate and 
provide estimations based upon the trend of the data. 

The advantages of modeling confidence are also shown in 
Fig. 5.a, where even when the throughput is maximum at (0, 0), 
the corresponding confidence is low, indicating that there is no 
historical data at that point.  Therefore, the operator should be 
careful with the resulting estimations at that point. 

Fig. 6 presents the estimations for the percentage of active 
time (PAT) of one of the motors in 𝐷𝐷𝐷𝐷2. Estimations of PAT 
provided valuable information about the reliability of the system 
running at a particular configuration. Low PAT is a result of 
shutdowns caused by equipment exceeding the maximum 
amperage. Therefore, regions with high PAT are desirable for 
improving the reliable operation of the process. 

A common scenario for running the grinding process was to 
maintain a fixed screen size for the grinders, while tuning the 
IFR to accommodate for different moisture contents. A simple 
approach to ensure a reliable operation was to maximize the 
throughput while maintaining the estimated PAT above a certain 
predefined value for all the components.  

PAT also provided information of which components are 
more likely to fail during an operation. Components with low 
estimated PAT were closely monitored during operation. This 
was extremely important to improve the response time of the 
operators by focusing their attention to the critical components.  

 
Figure 7.  Moisture vs Capability 

 

TABLE 1: TEST DESCRIPTIONS 
Test No. Test Description Screen Size 

1 6 Bales, Dry (6-14%) 𝐺𝐺1: 3”, 𝐺𝐺2: 1” 

2 8 Bales, Medium (17-23%) 𝐺𝐺1: 6”, 𝐺𝐺2: 1” 

3 6 Bales, High (25%-32%) 𝐺𝐺1: 6”, 𝐺𝐺2: 1” 

4 6 Bales, mixed moistures, 
ordered 

𝐺𝐺1: 6”, 𝐺𝐺2: 1” 

5 6 Bales, mixed moistures, 
random 

𝐺𝐺1: 6”, 𝐺𝐺2: 1” 

 

 
Figure 6: Percentage of active time for DC2 



Another important factor for achieving reliable operation 
was remaining close to previously explored regions. By 
modeling confidence, the PDU-RS system allowed informed 
exploration of the configuration space based on historical 
datasets and the trend of the data. 

Fig. 7 shows the throughput obtained during the tests of 
Table 1 compared with the throughput of the baseline. The 
results show an increased throughput and lower variability.  

Using the estimations provided by PDU-RS, we were able to 
make informed decisions that resulted in an increase on 
reliability from 63% to 96% (compared with the base line tests), 
while running at 90% capability. The total runtime for the tests 
on Table 1 was 319.5 minutes with down time being 13.3 
minutes.  All of the down time measured was a result of a 
hardware interface issue and was not a result of equipment 
failure or overload.  

VI. CONCLUSIONS 
This paper presented a data-driven decision support system 

for controlling a plant for feedstock comminution. The paper 
further presented the implementation of the presented system 
and showed experimental results of using it in a real world PDU. 
The PDU-RS system provided a clear interface that summarized 
the information available in historical datasets. The extracted 
models allowed us to perform informed decisions that resulted 
in an increase in the system throughput and reliability. During 
the experimental evaluation, we did not experience any 
unexpected downtime thanks to the adequate selection of screen 
sizes and infeed rates based upon the estimations provided by 
the GP models. Using a linear function as the mean for the prior 
distribution allowed us to create models that provided 
estimations based upon the trend of the data when extrapolating 
for unexplored data spaces. The Gaussian kernels used for the 
covariance function of the GP provided a complementary 
functionality by modeling local nonlinearities. Modeling 
confidence was fundamental to validate the estimations of the 
GP and provided a visualization of the explored space. This was 
particularly useful for performing informed exploration of 
configurations that maximize throughput and reliability.  
Testing of the PDU using the PDU-RS showed a significant 
increase in capability over baseline operations with improved 
reliability. 

REFERENCES 
[1] J. S. Tumuluru, L. G. Tabil, Y. Song, K. L. Iroba, and V. Meda, “Grinding 

energy and physical properties of chopped and hammer-milled barley, 
wheat, oat, and canola straws,” Biomass and Bioenergy, vol. 60, pp. 58–
67, Jan. 2014. 

[2] N. Yancey, C. T. Wright, C. Conner, and J. R. Hess, “Preprocessing 
Moist Lignocellulosic Biomass for Biorefinery Feedstocks,” Idaho 
National Laboratory (INL), INL/CON-08-14983, Jun. 2009. 

[3] S. Paulrud, “Upgraded biofuels-effects of quality on processing, handling 
characteristics, combustion and ash melting,” Apr-2004. [Online]. 
Available: http://pub.epsilon.slu.se/533/. [Accessed: 11-May-2017]. 

[4] N. Kaliyan and R. Vance Morey, “Factors affecting strength and 
durability of densified biomass products,” Biomass and Bioenergy, vol. 
33, no. 3, pp. 337–359, Mar. 2009. 

[5] J. R. Hess, K. L. Kenney, L. Ovard, E. Searcy, and C. T. Wright, 
“Commodity-Scale Production of an Infrastructure-Compatible Bulk 

Solid From Herbaceous Lignocellulosic Biomass,” Idaho National 
Laboratory (INL), 2009. 

[6] D. J. Schell and C. Harwood, “Milling of lignocellulosic biomass,” Appl 
Biochem Biotechnol, vol. 45–46, no. 1, pp. 159–168, Mar. 1994. 

[7] P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for 
Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and 
Biofuel Production,” Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713–3729, 
Apr. 2009. 

[8] Z. Miao, T. E. Grift, A. C. Hansen, and K. C. Ting, “Energy requirement 
for comminution of biomass in relation to particle physical properties,” 
Industrial Crops and Products, vol. 33, no. 2, pp. 504–513, Mar. 2011. 

[9] T. A. Bell, “Challenges in the scale-up of particulate processes—an 
industrial perspective,” Powder Technology, vol. 150, no. 2, pp. 60–71, 
Feb. 2005. 

[10] K. L. Kenney, W. A. Smith, G. L. Gresham, and T. L. Westover, 
“Understanding biomass feedstock variability,” Biofuels, vol. 4, no. 1, pp. 
111–127, Jan. 2013. 

[11] W. Dai, T. Chai, and S. X. Yang, “Data-Driven Optimization Control for 
Safety Operation of Hematite Grinding Process,” IEEE Transactions on 
Industrial Electronics, vol. 62, no. 5, pp. 2930–2941, May 2015. 

[12] R. Lestage, A. Pomerleau, and D. Hodouin, “Constrained real-time 
optimization of a grinding circuit using steady-state linear programming 
supervisory control,” Powder Technology, vol. 124, no. 3, pp. 254–263, 
Apr. 2002. 

[13] P. Zhou, W. Dai, and T. Y. Chai, “Multivariable Disturbance Observer 
Based Advanced Feedback Control Design and Its Application to a 
Grinding Circuit,” IEEE Transactions on Control Systems Technology, 
vol. 22, no. 4, pp. 1474–1485, Jul. 2014. 

[14] Y. Liu, J. Wang, and M. P. Wolcott, “Assessing the specific energy 
consumption and physical properties of comminuted Douglas-fir chips 
for bioconversion,” Industrial Crops and Products, vol. 94, pp. 394–400, 
Dec. 2016. 

[15] P. Adapa, L. Tabil, and G. Schoenau, “Grinding performance and 
physical properties of non-treated and steam exploded barley, canola, oat 
and wheat straw,” Biomass and bioenergy, 2011. 

[16] H. Tavakoli, S. S. Mohtasebi, A. Jafari, and D. Mahdavinejad, “Power 
requirement for particle size reduction of wheat straw as a function of 
straw threshing unit parameters,” Australian journal of crop science, 
2009. 

[17] L. Cadoche and G. D. López, “Assessment of size reduction as a 
preliminary step in the production of ethanol from lignocellulosic 
wastes,” Biological Wastes, vol. 30, no. 2, pp. 153–157, Jan. 1989. 

[18] V. S. P. Bitra et al., “Direct mechanical energy measures of hammer mill 
comminution of switchgrass, wheat straw, and corn stover and analysis 
of their particle size distributions,” Powder Technology, vol. 193, no. 1, 
pp. 32–45, Jul. 2009. 

[19] T. Chai, L. Zhai, and H. Yue, “Multiple models and neural networks 
based decoupling control of ball mill coal-pulverizing systems,” Journal 
of Process Control, vol. 21, no. 3, pp. 351–366, Mar. 2011. 

[20] T. Chai, Y. Zhang, H. Wang, C. Y. Su, and J. Sun, “Data-Based Virtual 
Unmodeled Dynamics Driven Multivariable Nonlinear Adaptive 
Switching Control,” IEEE Transactions on Neural Networks, vol. 22, no. 
12, pp. 2154–2172, Dec. 2011. 

[21] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-Based Techniques Focused 
on Modern Industry: An Overview,” IEEE Transactions on Industrial 
Electronics, vol. 62, no. 1, pp. 657–667, Jan. 2015. 

[22] S. J. Qin, “Survey on data-driven industrial process monitoring and 
diagnosis,” Annual Reviews in Control, vol. 36, no. 2, pp. 220–234, Dec. 
2012. 

[23] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A Review on Basic Data-Driven 
Approaches for Industrial Process Monitoring,” IEEE Transactions on 
Industrial Electronics, vol. 61, no. 11, pp. 6418–6428, Nov. 2014. 

[24] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006. 
[25] Owen, Art B. "A robust hybrid of lasso and ridge regression", 

Contemporary Mathematics, 443 (2007): 59-72.

 


	I. Introduction
	II. INL Biomass Feedstock Preprocessing Process Demonstration Unit
	III. Gaussian Processes
	IV. Intelligent Decision Support for Biomass PDU
	A. GP based performance estimation

	V. Experimental Results
	VI. Conclusions
	References


